Деформационный шов в железобетонных конструкциях

Содержание

Деформационный шов в железобетонных конструкциях

Деформационный шов в монолитных железобетонных конструкциях

В железобетонных конструкциях деформационный шов используется для снижения давления на элементы в тех местах, где может произойти деформация материала. Причиной нарушения изначального состояния изделия могут стать температурные колебания, очаговая усадка грунта, сейсмическая активность и прочие воздействия, создающие собственные небезопасные нагрузки, которые уменьшают несущую функцию конструкции.

Особенности и назначение

Конструкция разделяется на самостоятельные блоки при помощи усадочных швов, что делает все сооружение более упругим. Герметизация стыков проводится гибким изолирующим материалом.

Строения из железобетона деформируются под влиянием температурных перепадов, могут сжиматься или расширяться. Усадка бетона также приводит к укорачиванию материала. Происходит смещение элементов конструкции при любой вертикальной осадке.

Большая часть железобетонных сооружений является статически неопределимой, и при осадке бетона и фундамента, смене температуры появляются усилия, приводящие к возникновению трещин и изменению структуры конструкции.

Максимальный промежуток между швами

Расчет на усадку и температурные показатели не проводится для стандартных конструкций и имеющих трещиностойкость третьей категории, если межшовное расстояние меньше установленных пределов.

Деформационные промежутки могут располагаться вертикально и горизонтально. Без расчета в монолитных конструкциях между деформационными швами расстояния являются приемлемыми, если соответствуют следующим параметрам:

  • Каркасные сборные конструкции, включающие элементы из дерева и металла: 60 м для отапливаемых и 40 м для наружных построек.
  • Сплошные сборные: 50 м для утепленных и 30 м для неотапливаемых сооружений.
  • Каркасные цельные строения из тяжелого бетона: 50 м и 30 м, из легкого — 40 м и 25 м.
  • Сплошные монолитные конструкции из твердого состава: 40 м и 25 м, из ячеистого — 30 м и 20 м.

Размер блоков в строении из железобетона определяется нормами, установленными следующими справочными материалами:

  • Пунктом 1.17 СНиП 2.03.04−84, п. 6.27 СП 27.13330.2011, СП 52−110−2009.
  • Пунктом пособия 1.19 (1.22) к СНиП 2.03.01−84. Здесь берутся во внимание характеристики здания. Отапливаемые сооружения из монолитного железобетона могут иметь длину блока до 90 м.
  • Дополнением к СНиП 2.08.01−85. Пунктами 1.16 и 1.18 из выпуска 3 по проектированию зданий жилого типа.

В железобетонных монолитных конструкциях деформационные швы с трещиностойкостью 1 и 2 категории имеют свои особенности размещения:

  • Без исключения устанавливаются после расчетов на трещиностойкость конструкции.
  • Размещаются на здании по всей высоте, что позволяет деформации проходить свободно на отдельных частях сооружения. Швы проходят от вершины фундамента до начала кровли, разделяя стены и возможные перекрытия.
  • Стандартная ширина шва составляет 2−3 см, он
  • заполняется несколькими слоями рубероида, паклей, пропитанной смолой или толем.

Установка парных балок на двух колоннах обеспечивает оптимальный и правильный температурный шов в конструкциях монолитного и сборного типа. В каркасных сооружениях он более удобен при возникновении динамических и больших нагрузок на элементы перекрытия.

Размещение осадочных разделителей необходимо между элементами зданий, расположенными на грунтах с разной высотой и качеством. В этом случае они проходят и через фундамент. В железобетонных конструкциях усадочно-температурные швы также требуются, если проводится соединение старого здания и новой пристройки.

Раздвижка пар колонн с опорой на отдельные фундаменты и установка встречных балочных консолей позволяет создать оптимальный по качеству деформационный разделитель. Можно разместить между частями строения вкладной пролет, созданный из балок и плит.

Все представленные варианты исключают разрушение материала зданий и повышение нагрузки на отдельные элементы конструкции.

В строениях монолитного типа возможна следующее формирование усадочного шва: конец балки от одной части сооружения опирается свободно на консоль, являющуюся продолжением перекладины другой части здания. Соприкасающиеся элементы должны быть соединены максимально аккуратно, чтобы их трение не привело к разрушению консолей.

Примеры узлов

В тоннелях и каналах также предусматриваются усадочные швы. Промежуток между ними рассчитывается (его минимальная длина должна составлять 50 м).

Шпонки осадочного шва устанавливаются по проектно-конструкторским документам. Между ними и арматурой оставляется промежуток от 20 мм. Монтаж осуществляется с использованием проволоки на расстоянии от 250 мм.

Цианакрилатный клей применяется по всей длине для фиксации шпонок. В качестве усиления выступает каучук. После монтажа шпонок нужно составить на внутренние работы с материалом акт приемки. Все дальнейшие манипуляции предусматривают сохранность конструкции шва.

Размещение деформационных швов позволяет защитить конструкции зданий от разрушения и перекосов. Их правильное расположение значительно повышает эксплуатационный период железобетонных сооружений и сохраняет качество материала.

Деформационный шов

Прочее. Архитектура и строительство

В СНиПе написано
2.13. Поверхность рабочих швов, устраиваемых при укладке бетонной смеси с перерывами, должна быть перпендикулярна оси бетонируемых колонн и балок, поверхности плит и стен. Возобновление бетонирования допускается производить по достижении бетоном прочности не менее 1,5 МПа. Рабочие швы по согласованию с проектной организацией допускается устраивать при бетонировании:

колонн — на отметке верха фундамента, низа прогонов, балок и подкрановых консолей, верха подкрановых балок, низа капителей колонн;

балок больших размеров, монолитно соединенных с плитами — на 20 — 30 мм ниже отметки нижней поверхности плиты, а при наличии в плите вутов — на отметке низа вута плиты;

плоских плит — в любом месте параллельно меньшей стороне плиты;

ребристых перекрытий — в направлении, параллельном второстепенным балкам;

отдельных балок — в пределах средней трети пролета балок, в направлении, параллельном главным балкам (прогонам) в пределах двух средних четвертей пролета прогонов и плит;

массивов, арок, сводов, резервуаров, бункеров, гидротехнических сооружений, мостов и других сложных инженерных сооружений и конструкций — в местах, указанных в проектах.

И все. А про расстояния между этмми швами не сказано, а меня как раз это и интересует, через какие максимальновозможные расстояния делать перерывы. Просто я видел как турецкие ребята залили плиту 70 м длиной, 80 см толщиной за 1 день — она вся была покрыта волосяными трещинами, я предположил, что это усадочные напряжения.

Сообщение от Mahno:
Исходя из чего можно назначить размеры захваток?

Не надо путать захватку и границы зон бетонирования. Размер захватки определяется логикой работы кранов, границы зон бетонирования- возможностями одновременной заливки.

Сообщение от AIK:
Не надо путать захватку и границы зон бетонирования. Размер захватки определяется логикой работы кранов, границы зон бетонирования- возможностями одновременной заливки.

Tony_Chu, сколько секций, столько и швов (-1).

Пособие к старому СНиП п.5.121: Расстояния между температурно-усадочными швами в бетонных фундаментах и стенах подвалов допускается принимать в соответствии с расстояниями между швами, принятыми для вышележащих конструкций.

оттуда же п.1.19: Расстояния между температурно-усадочными швами, как правило, должны устанавливаться расчетом. Расчет допускается не производить, если при расчетной температуре наружного воздуха минус 40 °С и выше расстояние между температурно-усадочными швами не превышает значений, приведенных в табл. 3.

А вообще, как наваждение, точно помню видел пункт в новых нормах, что расстояние теперь определяется только по расчету.. глюк или документ подправили?

Сообщение от ander:
Tony_Chu,
А вообще, как наваждение, точно помню видел пункт в новых нормах, что расстояние теперь определяется только по расчету.. глюк или документ подправили?

Тоже обратил на это внимание
Документ то не подправили а новый выпустили
Считаю что можна принимать расстояния между температурными швами
по старых нормах.

Tony_Chu
170/5=34 м
секция-шов
если посчитаете что можно больше-принимайте больше.

Сообщение от Aragorn:
Если исходить их того, что фундаментная плита находится под землей, то температурных деформаций у нее происходить не будет.

Абсолютно согласен, но есть один нъю-анс — температурные напряжения, в том числе в фундаменте в первую очередь зависят от градиента температуры , поэтому необходимо различать период эксплуатации здания и период возведения конструкций здания. В период эксплуатации перепад температур в плите (зима-лето, день-ночь) значительно меньше, чем в период возведения. Поэтому на период эксплуатации здания этот вопрос, как правило не стоит, а в период устройства ( в данном случае фундаментной плиты) вопрос не снимается, поэтому для уменьшения температурных напряжений (уточним — в том числе для этого) предусматриваются рабочие швы бетонирования. Если-же бетонировать без швов, в особенности протяженные конструкции, то разница температур между ранее забетонированными участками и бетонируемым в сплошной конструкции может быть очень значительной. Швы бетонирования снимают эту проблему. Все это должно быть прописано в ППР.

Я пишу такое примечание:
Бетонирование ростверка выполнять с устройством временных рабочих швов с выпусками арматуры по проекту (для снижения температурных и усадочных усилий в ростверках). Расстояние между швами принимать не более 40 метров. Дальнейшее бетонирование производить через 28 суток после устройства шва. В случае необходимости дальнейшего бетонирования сразу после устройства шва следует начинать бетонирование следующего участка на расстоянии 1.5. 2м от забетонированного с устройством выпусков арматуры из обоих участков по проекту. После набора проектной прочности бетона обоих участков следует сварить выпуски арматуры между собой по ГОСТ 14098-91 соединение С22-Ру, и замонолитить пропущенный участок бетоном по проекту.
Можете покритковать.

И вообще давно хочу поднять тему стандартных примечаний на все случаи жизни. таких много, все пишут немного по-разному.

Деформационные швы в железобетоне

Здания становятся все выше, строятся в особых условиях, но даже применение монолитных железобетонных конструкций не гарантирует им прочность и долговечность. Различные внешние и внутренние воздействия, ведут к возникновению структурных напряжений, которые деформируют их каркасы и могут привести к разрушениям. Решение — устройство деформационных швов.

Что такое деформационный шов?

Это предусмотренное проектом фрагментирование конструкции здания в вертикальной (горизонтальной) плоскости, компенсирующее напряжения в несущем каркасе, последствия которых — изменения геометрических размеров и взаимного положения железобетона. Такие швы задают постройкам проектную величину упругой подвижности. Они подразделяются в зависимости от компенсируемого ими напряжения на температурные, усадочные, конструкционные, осадочные и сейсмические.

Наибольшие расстояния между деформационными швами в железобетонных конструкциях

Постройки, в каркас которых включены предварительно напряженные изделия 1-й (2-й) групп в отношении стойкости к образованию трещин, разделяются деформационными швами, расстояние между которыми рассчитывается в отношении значений трещиностойкости. Дистанция между разрезами в пределах одного отапливаемого здания не должна превышать:

  • для сборных конструкций — 150 м;
  • для сборно-монолитных и монолитных конструкций — 90 м.

Если постройка не обогревается, приведенные значения снижаются на 20%.

Деформационные швы разделяют протяженные по фасаду и поперечнику сооружения на отдельные блоки. Когда проектные числовые параметры габаритов меньше соответствующих показателей из таблицы 1 (при значениях температуры воздуха от – 40 град. и выше), их не рассчитывают. Последнее допустимо, если в конструкцию включены предварительно напряженные и ненапряженные изделия, трещиностойкость которых отнесена к 3-й группе. Максимально допустимые расстояния между деформационными разъединителями в железобетонных конструкциях, которые можно не рассчитывать, показаны в таблице 1.

Таблица 1.

При возведении зданий в один этаж из каркасного армированного бетона расстояние от одного до другого шва разрешается увеличивать на 20% относительно данных таблицы 1. Также табличные данные применимы при создании в каркасных сооружениях вертикальных связей в середине отдельного блока. Размещение подобных связей по краям такого блока приближает работу его каркаса (при воздействии типовых деформаций) к аналогичному цельному сооружению.

Как выполняются?

Усадочный и термический (осадочный и сейсмический) швы в сооружении могут совмещаться в один — температурно-усадочный (осадочно-сейсмический) разрез. Первый перерезает постройку по длине и ширине от кровли до верха фундамента, а второй делит ее на полностью независимые блоки. Допустимую деформацию в железобетоне обеспечивает вертикальный разрез перекрытий, стен шириной 20 – 30 мм. Данное свободное пространство заполняется упругим гидрофобным материалом. Монтирование парных колонн и балок в смежных частях соседних корпусов формирует правильное размыкание.

Осадочный шов обустраивается в постройках, имеющих блоки разной высоты, и тех, что установлены в разнородные грунты, даже если блоки объединены вкладным пролетом. В отмостке температурное расширение армированного камня компенсируется ее фрагментированием с шагом до 2-х метров путем размещения деревянных брусков, пропитанных битумом, в опалубке. Пристенное примыкание опалубки делается герметичным и подвижным. Бетонные полы подвержены усадочным деформациям, когда площадь помещения превышает 30 м2.

Расширение бетона при твердении вызывает появление трещин. Прорезание поверхности стяжки на глубину от 1/4 до 1/2 высоты обеспечивает возможность разрывам материала пройти по созданным разрезам или под ними в глубине. Отдельные площадки стяжки при этом могут иметь длину одной стороны до 6-ти метров и соотношение сторон не более 1:1,5. Стыки различных материалов, уложенных в пол, как и конструкционные стыки залитого в разное время бетона, обеспечиваются демпферами, которые принимают на себя усадочные и тепловые горизонтальные расширения материалов.

Изоляционные швы отделяют бетонную стяжку на всю ее высоту от стен вдоль периметра помещения. Разрез заполняется упругими материалами или остается пустым. Аналогично прорезанием шов обеспечивается изоляция колонн, лестничных маршей от стяжки на полу. Монолитные плиты перекрытий разъединяются швами от несущего каркаса сооружения. Расчеты помогают определить ширину типового элемента перекрытия.

Фрагментами такого размера заливаются межэтажные перекрытия. Пустоты заполняются эластичными гидроизоляционными составами, материалами и заделываются. Ленточные фундаменты также разделяются на всю высоту деформационными швами на независимые элементы. Они должны обеспечить надежную гидроизоляцию и компенсацию нагрузок и напряжений. Количество сечений фундамента и их частота определяются проектом. Шаг разрезания фундамента зависит от типа грунта.

К примеру, на пучинистых — 15 м, на слабопучинистых — 30 м. Герметики, которые укладываются в швы, должны длительное время сохранять эластичность и герметичность. Вертикальными конструкциями внутренних и наружных стен формируются горизонтальные сечения, которыми они разделяются на отсеки.

Для несущих фасадных стен высота отсека — до 20 м, для внутренних — до 30 м. В подобные размыкания каркаса закладывается шпунт, завернутый дважды в толь, который забивается паклей и герметизируется глиной. В зависимости от типа швов их ширина лежит в пределах от 3-х мм до 100 см.

Заключение

Железобетонные конструкции при эксплуатации подвергаются деформационным воздействиям, имеющим разную природу. Вместе с тем правильная их компенсация обустройством деформационных разрезов обеспечивает сооружениям упругую подвижность, прочность и долговечность.

Деформационные швы в бетоне: деформационный шов в монолитной плите, фундаментной плиты, деформационный шов в железобетонных конструкциях

Деформационные швы в бетоне

Деформационный шов – основная составляющая бетонных полов. Существует несколько видов деформационных швов.

Изоляционные швы располагаются вокруг колонны или около фундамента, потому что они помогают предотвратить деформацию от здания на пол. Такой шов прокладывается с помощью изоляционного материала около основания здания перед самой заливкой бетонной смесью.

Усадочные швы. Они помогают предупредить стяжку от тресканья в процессе затвердевания. В последствие такой результат дает трещину там, где нужно. Усадочные швы должны располагаться по осям колонн и соединятся с углами швов по периметру колонн. Области пола, которые образуют усадочные швы, должны быть квадратными. Длина такой области не может превышать ширину больше чем в 1,5 раза. Такие швы обязательно должны быть только прямыми без поворотов. Должны располагаться на одинаковом расстоянии ширины стяжки. Если существует вероятность ширины шва от 300-360 сантиметров, то посредине должен находиться продольный шов. Если бетонируется открытая площадка, то расстояние между швами должно быть около 3 метров. Главную цель, которую нужно перед собой поставить – это чем меньше область расположения, тем меньше вероятность растрескивание пола.

Как правило, швы нарезаются областями 6х6 и в таком же порядке кладутся на бетон. Швы должны занимать1/3 толщины стяжки. По причине этого бетон растрескается в то месте, в котором нужно. Трещины будут иметь шероховатость, что не даст вертикальному смещению, до тез пор, пока трещина не будет слишком широкой.

Вам могут быть интересны эти товары

Конструкционные швы. Располагаются там, где недавно была окончена работа по заливанию бетона. Поперек шва можно применять рейки. Они должны располагаться в глубине стяжки под четкими углами швов. Один конец рейки нужно смазать битумом, это позволяет перемещению в стяжке. Конструктивные швы выполняют те же функции что и усадочные. Необходимо, что конструкционный шов соединялся с усадочным швом.

Важно выполнять строго по техническим рекомендациям.

Деформационные швы в монолитной плите

При постройке монолитных конструкций очень сложно соблюдать все технические правила. Потому что резкие перепад температуры и осадка грунта влияет на образование трещин. В связи с такими проблемам монолитные конструкции разбивают на блоки сквозными деформационными швами.

Швы, которые дают трещины при определенных температурных влияниях, называются температурными. По высоте такие швы разделяют сооружение, которое находится над землей, на секции. Швы, в которые влияют осадки грунта, называются осадочными. Такой шов разделяет все здание по высоте, включая фундамент. Если возникает вероятность влияний обоих явлений, то использую температурно-осадочные швы. Обязательно расположение тех или иных швов, должно указываться на чертежах.

Рабочие швы располагаются на соединение ранее уложенным и свежеуложенным бетоном. Если есть такова возможность, то следует бетонную смесь укладывать непрерывно. Для фундаментов под машины, такое правило является обязательным техническим условием. Хотя обычно такое правило соблюдать очень сложно, и поэтому появляется неизбежность устройства рабочих швов. В рабочих швах, где соединяются поверхности друг другу, не должны перемещаться. Старые и новые участки как являются границей изменения направлений усадочных деформаций, поэтому появляются растягивающие усилия. Это определяет повышенное внимание и требования к областям стыка. В вертикальных зданиях швы должны располагаться перпендикулярно основанию. А в балках, прогонах и плитах – вертикально, потому что он ослабляет конструкцию.

При бетонировании колонн шов должен находиться сверху фундамента. Бетонирование балок и плит должно происходить в одно, и тоже время. Благодаря этому бетон не должен доводиться на 200-300 миллиметров до нижней грани плиты.

Если бетон еще не слишком затвердел, то можно сделать перерыв в работе. Если он находится на уровне раннего затвердевания, то нужно остерегаться тряски опалубки и на длине до 1 метра. Также в таком случаем категорически запрещено применение вибраторов. Если бетон уже имеет некую прочность (1-1,2 МПа), то основание возле соединения, можно заливать обычным способом. Чтобы сцепление нового бетона со старым было лучше, то между ними нужно убрать карбонатную пленку, которая получилась в прочесе соединения минералов цемента с углекислотой. После всего этого бетон хорошо отчищают, промывают воздухом и сверху накладывают раствор, толщина которого составляет 1,5-2 миллиметра. Расстояние между швами рассчитывается на основе технико-экономических расчетов.

Деформационный шов фундаментной плиты

Фундамент – неотъемлемая часть любого конструктивного строительства. Именно на него осуществляются все нагрузки, совокупность всех частей снования и вещей, которые находятся в нем. Но воздействие на прочность и долговечность конструкции осуществляют и динамические влияния. Деформационный шов в ленточном фундаменте выполняет функцию компенсирования температурной деформации материала, и еще воздействие осадок грунта, в том числе и сезонных. Поскольку само основание находится ниже уровня земли, то они подвергаются сейсмическим опасностям. Прочность и срок службы гидроизоляции зависит от правильности процесса выполнения компенсатора». Он выполняет функцию сохранения материалов от влаги и устойчивость к водонепроницаемости. Ведь внешние покрытие реконструировать не сложно, а вот само основание фундамента составит некие проблемы. В большинстве случая это невозможно, и приводит к тому, что надо ремонтировать все здание.

Деформационные швы должны располагаться в нескольких местах. Их размеры, качество, и виды определяются в зависимости от типа фундамента и его площади. Обратите внимание на то, что такое место должно быть тщательно герметизировано. Иначе, если поверхность не герметизировать, то швы будут, наподобие ячейки, куда будет затекать влага. Еще стоит учитывать тот момент, что герметика должна обладать свойством эластичности.

Правила устройства. Швы должны располагаться по всей высоте фундамента. Размеры, виды и расстояния между ними определяются в зависимости от проектных расчетов. В то же время проектные расчеты зависят от площади здания и количества использованных материалов. Обычно расстояние между швами 115-30 метров – это для частных строений. Также расстояние зависит от грунта: для пучинистого – 15 метров, для слабопучинистого – 30 метров. Если стены состоят из древесины, то расстояние должно составлять 60-70 метров. Ширина шва при этом составляет 10 сантиметров. Например, если здание большое, то разрывы в фундаменте должны быть на границе областей дома, которые будут иметь разное назначение.

Шов выступает в роли разрыва в ленте фундамента. Этот разрыв должен заполняться утеплительными или гидроизоляционными материалами. Так же само и фундаментной плите их заполняют просмоленной паклей.

В зазор необходимо класть подстилку», сверху которой будет располагаться деревянная рейка. Ее необходимо накрыть гидроизоляционными материалами и залить горячим битумом. Расстояние между рейками должно составлять 1-2 метра.

Между фундаментом и зазором образуется шов. В роли компенсатора может также играть толстый слой изолирующего материала.

Иногда есть такие причины, по которым шов можно не делать. Но на все это нужно иметь большой опыт работы и точный расчет. К таким причинам относится: если подвижки грунта в допуске, если шов будет располагаться по всей дине стены и если деформация совмещений не превышает предельных значений.

Деформационный шов в железобетонных конструкциях

С резкими перепадами температуры железобетонные конструкции имеют свойство укорачиваться или удлинятся. По причине укладки бетона обычно укорачиваются.

Если укладка бетона будет неравномерной, то поверхности могут сместиться в вертикальном направлении.

В основном к появлению трещин или разрушению здания могут привести резкие перепады температуры, усадки бетона, а также осадки фундамента.

Деформационные блоки – это деление всей конструкции на секции с помощью температурно-осадочных свойств. Если расстояние между температурно-осадочными швами, когда температура достигает +40 градусов, не выходит за пределы, то на появление трещин 3-й категории температура и осадка не влияет.

Деформационный шов в железобетонных конструкциях

СНиП 2.03.04-84
________________
Зарегистрирован Росстандартом в качестве СП 27.13330.2010. —
Примечание изготовителя базы данных.

СТРОИТЕЛЬНЫЕ НОРМЫ И ПРАВИЛА

БЕТОННЫЕ И ЖЕЛЕЗОБЕТОННЫЕ КОНСТРУКЦИИ, ПРЕДНАЗНАЧЕННЫЕ ДЛЯ РАБОТЫ В УСЛОВИЯХ ВОЗДЕЙСТВИЯ ПОВЫШЕННЫХ И ВЫСОКИХ ТЕМПЕРАТУР

____________________________________________________________________
Текст Сравнения СНиП 2.03.04-84 с СП 27.13330.2011см. по ссылке.
— Примечание изготовителя базы данных.
____________________________________________________________________

РАЗРАБОТАНЫ НИИЖБ Госстроя СССР (д-р техн. наук, проф. А. Ф. Милованов руководитель темы; кандидаты техн. наук В. Н. Горячев, В. М. Милонов, В. Н. Сямойленко) с участием ВНИПИ Теплопроект Минмонтажспецстроя СССР (В. А. Тарасова), Макеевского ИСИ Минвуза Украинской ССР (канд. техн. наук А. П. Кричевский), Харьковского Промстройннипроекта Госстроя СССР (кандидаты техн. наук И. Н. Заславский, С. Л. Фомин).

ВНЕСЕНЫ НИИЖБ Госстроя СССР.

ПОДГОТОВЛЕНЫ К УТВЕРЖДЕНИЮ Главтехнормированием Госстроя СССР (В. М. Скубко).

С введением в действие СНиП 2.03.04-84 Бетонные и железобетонные конструкции, предназначенные для работы в условиях воздействия повышенных и высоких температур с 1 января 1986 г. утрачивает силу Инструкция по проектированию бетонных и железобетонных конструкций, предназначенных для работы в условиях воздействия повышенных и высоких температур (СН 482-76).

При пользовании нормативным документом следует учитывать утвержденные изменения строительных норм и правил и государственных стандартов, публикуемые в журнале Бюллетень строительной техники Госстроя СССР и информационном указателе Государственные стандарты СССР Госстандарта.

Настоящие нормы и правила распространяются на проектирование бетонных и железобетонных конструкций, предназначенных для работы в условиях систематического воздействия повышенных (от 50 до 200°С включительно) и высоких (свыше 200°С) технологических температур (далее — воздействия температур).

Нормы устанавливают требования по проектированию указанных конструкций, изготовляемых из конструкционного тяжелого бетона средней плотности от 2200 до 2500 включительно (далее — обычный бетон) и из жаростойкого бетона плотной структуры средней плотности 900 и более.

Требования настоящих норм не распространяются на конструкции из жаростойкого бетона ячеистой структуры.

Проектировать железобетонные дымовые трубы, резервуары и фундаменты доменных печей, работающие при воздействии температуры свыше 50°С, следует с учетом дополнительных требований, предъявляемых к этим сооружениям соответствующими нормативными документами.

Основные буквенные обозначения, принятые в настоящих нормах согласно СТ СЭВ 1565-79, приведены в справочном приложении 1.

1. ОСНОВНЫЕ ПОЛОЖЕНИЯ

1. ОСНОВНЫЕ ПОЛОЖЕНИЯ

ОБЩИЕ УКАЗАНИЯ

1.1. Бетонные и железобетонные конструкции, предназначенные для работы в условиях воздействия повышенных температур, следует предусматривать, как правило, из обычного бетона.

Фундаменты, которые при эксплуатации постоянно подвергаются воздействию температуры до 250°С включительно, допускается принимать из обычного бетона.

Бетонные и железобетонные конструкции, предназначенные для работы в условиях воздействия высоких температур, следует предусматривать из жаростойкого бетона.

Несущие элементы конструкций тепловых агрегатов, выполняемые из жаростойкого бетона, сечение которых может нагреваться до температуры выше 1000°С, допускается принимать только после их опытной проверки.

Жаростойкие бетоны в элементах конструкций тепловых агрегатов следует применять в соответствии с рекомендуемым приложением 2.

Классы жаростойкого бетона по предельно допустимой температуре применения в соответствии с ГОСТ 20910-82* в зависимости от вида вяжущего, заполнителей, тонкомолотых добавок и отвердителя приведены в табл. 9.
__________________
* На территории Российской Федерации документ не действует. Действует ГОСТ 20910-90, здесь и далее по тексту. — Примечание изготовителя базы данных.

1.2. Для конструкций, работающих под воздействием температуры выше 50°С в условиях периодического увлажнения паром, технической водой и конденсатом, необходимо соблюдать требования пп. 1.8, 2.4, 2.6 — 2.8, 2.11 и 5.7. При невозможности обеспечения указанных требований расчет таких конструкций допускается производить только на воздействие температуры и нагрузки без учета периодического увлажнения. При этом в расчете сечения не должны учитываться крайние слои бетона толщиной 20 мм с каждой стороны, подвергающиеся замачиванию в течение 7 ч, и толщиной 50 мм при длительности замачивания бетона более 7 ч или должна предусматриваться защита поверхности бетона от периодического замачивания.

Окрашенная поверхность бетона или гидроизоляционные покрытия этих конструкций должны быть светлых тонов.

1.3. Циклический нагрев — длительный температурный режим, при котором в процессе эксплуатации конструкция периодически подвергается повторяющемуся нагреву с колебаниями температуры более 30 % расчетной величины при длительности циклов от 3 ч до 30 дней.

Постоянный нагрев — длительный температурный режим, при котором в процессе эксплуатации конструкция подвергается нагреву с колебаниями температуры до 30 % расчетной величины.

1.4. При проектировании конструкций из жаростойких бетонов по ГОСТ 20910-82 необходимо учитывать дополнительные требования к исходным материалам для жаростойких бетонов, подбору их состава и технологии приготовления, а также особенности производства работ по требованиям СН 156-79.

ОСНОВНЫЕ РАСЧЕТНЫЕ ТРЕБОВАНИЯ

1.5. Бетонные и железобетонные конструкции, работающие в условиях воздействия повышенных и высоких температур, следует рассчитывать на основе положений СНиП 2.03.01-84 с учетом дополнительных требований, изложенных в настоящих нормах и правилах.

При расчете бетонных и железобетонных конструкций необходимо учитывать изменения механических и упругопластических свойств бетона и арматуры в зависимости от температуры воздействия. При этом усилия, деформации, образование, раскрытие и закрытие трещин определяют от воздействия нагрузки (включая собственный вес) и температуры.

Расчетные схемы и основные предпосылки для расчете бетонных и железобетонных конструкций должны устанавливаться в соответствии с условиями их действительной работы в предельном состоянии с учетом в необходимых случаях пластических свойств бетона и арматуры, наличия трещин в растянутом бетоне, а также влияния усадки и ползучести бетона как при нормальной температуре, так и при воздействии повышенных и высоких температур.

1.6. Расчет конструкций, работающих в условиях воздействия повышенных и высоких температур, должен производиться на все возможные неблагоприятные сочетания нагрузок от собственного веса, внешней нагрузки и температуры с учетом длительности их действия и в случав необходимости — остывания.

Расчет конструкций с учетом воздействия повышенных и высоких температур необходимо производить для следующих основных расчетных стадий работы:

кратковременный нагрев — первый разогрев конструкции до расчетной температуры;

длительный нагрев — воздействие расчетной температуры в период эксплуатации.

Расчет статически определимых конструкций по предельным состояниям первой и второй групп (за исключением расчета по образованию трещин) следует вести только для стадии длительного нагрева. Расчет по образованию трещин необходимо производить для стадий кратковременного и длительного нагрева с учетом усилий, возникающих от нелинейного распределения температуры бетона по высоте сечения элемента.

Расчет статически неопределимых конструкций и их элементов по предельным состояниям первой и второй групп должен производиться:

а) на кратковременный нагрев конструкции по режиму согласно СНиП III-15-76*, когда возникают наибольшие усилия от воздействия температуры (см. п. 1.10). При этом жесткость элементов в конструкции определяется по указаниям пп. 4.17 и 4.18 как от кратковременного действия всех нагрузок и в зависимости от скорости нагрева;
_____________________
* На территории Российской Федерации документ не действует. Действуют СНиП 3.03.01-87. — Примечание изготовителя базы данных.

б) на длительный нагрев — воздействие на конструкцию расчетной температуры в период эксплуатации, когда происходит снижение прочности и жесткости элементов в результате воздействия длительного нагрева и нагрузки.

При этом жесткость элементов определяется по указаниям пп. 4.17 и 4.18 как от длительного воздействия всех нагрузок.

Расчетная технологическая температура принимается равной температуре среды цеха или рабочего пространства теплового агрегата, указанной в задании на проектирование.

Расчетные усилия и деформации от кратковременного и длительного нагревов определяются с учетом коэффициента надежности по температуре по указаниям п. 1.27.

1.7. Величины нагрузок и воздействий, значения коэффициентов надежности, коэффициентов сочетаний, а также подразделение нагрузок на постоянные и временные длительные, кратковременные, особые следует принимать в соответствии с требованиями СНиП II-6-74 с учетом дополнительных указаний СНиП 2.03.01-84.

Нагрузки и воздействия температуры, учитываемые при расчете конструкции по предельным состояниям первой и второй групп, следует принимать по табл. 1 и 2.

При расчете по прочности в необходимых случаях должны учитываться особые нагрузки с коэффициентами надежности по нагрузке , принимаемыми по соответствующим нормативным документам. При этом усилия, вызванные действием температуры, не учитываются.

1.8. К трещиностойкости конструкций (или их частей) должны предъявляться требования СНиП 2.03.01-84 с учетом дополнительных указаний настоящего пункта.

Категории требований к трещиностойкости железобетонных конструкций в зависимости от условий их работы, вида арматуры, а также величины предельно допустимой ширины раскрытия трещин с учетом воздействия температуры на элементы, эксплуатируемые в условиях неагрессивной среды, для обеспечения сохранности арматуры приведены в табл. 3.

1.9. Определение усилий в статически неопределимых конструкциях от внешней нагрузки, собственного веса и воздействия повышенных и высоких температур производят по правилам строительной механики методом последовательных приближений. При этом жесткость элементов определяют с учетом неупругих деформаций и наличия трещин в бетоне от одновременного действия внешней нагрузки, собственного веса и температуры.

1.10. При кратковременном нагреве усилия от воздействия температуры в элементах статически неопределимых конструкций должны определяться в зависимости от состава бетона (см. табл. 9) и температуры нагрева, вызывающей наибольшие усилия:

а) при нагреве бетона № 1 свыше 50 до 250°С — по расчетной температуре;

б) при нагреве бетонов № 2-11, 23 и 24 свыше 200 до 500°С по расчетной температуре; при нагреве свыше 500°С — при 500°С;

в) при нагреве бетонов № 12-21, 29 и 30 свыше 200 до 400°С — по расчетной температуре, при нагреве свыше 400°С — при 400°С.

Для конструкций, находящихся на наружном воздухе, расчет наибольших усилий от воздействия температур выполняют по расчетной температуре воздуха по требованию п. 1.40.

Все для уюта вашего дома - журнал Don-Krovlya.Ru